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Air Pollution and Daily Hospital Admissions in Metropolitan Los Angeles
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We used daily time-series analysis to evaluate associations between ambient cabon monoxide,
nitrogen dioxide, particulate matter . 10 pm in aerodynamic diameter (PM0), or ozone concen-
trations, and hospital admissions for cardiopulmonary ilinesses in metropolitan Los Angles during
1992-1995. We performed Poisson regsions for the entire patient population and for subgroups
defined by season, region, or perso'nal characteristics, allowing for effects of temporal variation,
weather, and autocorrelation. CO showed the most significant (p 0.05) reationships
to cardiovascular admissions. A wintertime 25th-75th percentile increase in CO (1.1-2.2 ppm)
predicted an increase of 4% in cardiovascular admissions. NO2, and, to a lesser extent, PMIO
tracked.CO and showed similar associations with cardiovacular die, but 03 was negatively or
nonsignificantly associated. No significant demographic differences were found, although
increased cardiovascular effects were suggested in diabetics, in whites and blacks (relative to
Hispanics and Asians), and in persons older than 65 years of age. Pulmonary disease admissions
associated more with NO2 and PM10 tan with CO. Pulmonary efiects were generally smaler
than cardiovascular effet and were more sensitive to the choice of modd. We conclude that in
Los Angeles, atmospheric stagnation with high primary (COINO2jPM1Q) pollution, most com-
mon in antumn/winter, increase the risk of hospitalization fir cardiopulmonary illness. Summer
photochemical pollution (high O3) apparently presents less risk KIy words air pollutants, carbon
monoxide, epidemiology, Los Angeles, morbidity, nitrogen dioxide, ozone, particulate matter.
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Time-series analyses of daily mortality or
morbidity have shown statistical associations
with air pollution in cities throughout the
world. Physiologic/toxicologic mechanisms
of these phenomena remain unknown, and
time-series analyses have not clearly linked
specific pollutants with specific health
outcomes (1-3); thus, their application to
pollution-control policy decisions remains
controversial (4). Combustion-related partic-
ulate matter, the only pollutant common to
virtually all locations of time-series studies,
has been the focus of scientific and regulatory
attention (1,2,4-6). However, recent studies
in a number of North American cities also
associate cardiovascular and/or pulmonary
disease incidence with pollutant gases such as
carbon monoxide, nitrogen dioxide, and/or
ozone (7-14. Where they are not highly cor-
related, gas and particulate pollutants appear
to have separate statistically and medically
significant influences on cardiopulmonary
morbidity (9,11,14M.

The Los Angeles metropolitan area has
been studied relatively little by time-series
analysis, but is a good candidate for study
because of its large diverse population (a 14
million); detailed monitoring of air quality
and hospital admissions; mild climate, which
should limit confounding of pollution effects
by weather stresses; and severe but widely
variable air pollution (with maximum levels
of primary pollutant gases, secondary
photochemical oxidant gases, and particulate

pollution occurring at somewhat different
times and places). Powerful tests of pollution
effects should be possible in the entire met-
ropolitan population and in subpopulations
defined geographically, demographically, or
clinically. We hypothesized that regional
and/or seasonal differences in time-series
analysis results in the general population
and/or in particular subgroups, would allow
us to distinguish effects associated with pri-
mary pollutants (CO or NO2), photochemi-
cal oxidants (03), or particulate matter more
clearly than has been possible elsewhere. If
so, we could rank these categories of pollu-
tion in terms of their public health impact,
and thus provide useful guidance for regula-
tory policymaking and for future research on
mechanisms. To test this hypothesis, we ana-
lyzed daily admission data for 1992-1995
from the South Coast Air Basin (Los
Angeles, Riverside, San Bernardino, and
Orange Counties in California, excluding
mountain and desert regions of the first
three counties) in relation to daily levels of
CO, NO2, 03, and particulate matter < 10
pm in aerodynamic diameter (PM0O).
Methods
Data acquisition and management. After its
institutional review board verified con-
fidentiality protection, the California
Office of Statewide Health Planning and
Development (OSHPD) (Sacramento, CA)
provided records of hospital admissions in

the metropolitan counties for 1992-1995
(the only years with adequately comparable
PM10 data). The records included hospital
identifier, date, principal and additional diag-
noses as International Classification ofDiseases
(ICD; World Health Organization, Geneva)
codes, All-Patient-Refined Diagnosis-Related
Group (APR-DRG; 3M Inc., Murray, UT)-
a broader classification based on Medicare
diagnosis-related groups, sex, age, ethnic
group, and residence zip code. Daily counts
after 21 December 1995 were excluded from
analysis because the records for numerous
patients not discharged until 1996 were
missing, and all 1995 data were excluded
from ethnic-group analyses because of
changes in OSHPD ethnic classifications.
Broad principal-diagnosis categories used in
analyses were cardiovascular (APR-DRG
103-144); cerebrovascular (APR-DRG
14-17 and 22); pulmonary (APR-DRG
75-101); and abdominal-a negative control
category thought to be unrelated to pollution
(APR-DRG 146-207). More-specific princi-
pal diagnoses, thought likely to associate with
air pollution on the basis of previous epi-
demiologic or toxicologic evidence, were also
analyzed: congestive heart failure (CHF)
(APR-DRG 127); myocardial infarction
(APR-DRG 1 1 1, 1 1 5, and 121); cardiac
arrhythmia (APR-DRG 138); occlusive
stroke (APR-DRG 14); asthma (ICD 493);
and chronic obstructive pulmonary disease
(COPD) (APR-DRG 88). Analyses excluded
patients younger than 30 years of age (with
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exceptions noted in "Results") and presched-
uled admissions.

We obtained air pollution and meteoro-
logic data from the South Coast Air Quality
Management District (SCAQMD; Diamond
Bar, CA) and from the National Weather
Service. These data included hourly PMIO
from six SCAQMD stations with continuous
monitors; hourly CO, 03, NO2, temperature,
and relative humidity from those stations plus
others; 24-hr-average PMIO measured every
sixth day by high-volume samplers at or near
each continuous PMIO station; and barometric
pressure and rainfall at the Los Angeles
International Airport. Figure 1 shows monitor
locations. Analyses related daily admission
counts with 24-hr averages of environmental
variables. For 03, maximum hourly concen-
trations were also analyzed; they correlated
highly with 24-hr averages in all seasons (r
2 0.79) and showed similar relationships to
daily morbidity ("Results"). We did not ana-
lyze relative humidity because many data were
missing or out of range. Stations differed in
their continuous PM1O monitoring tech-
niques and their relationships of continuous
to high-volume sampler data. On the assump-
tion that high-volume data were more
comparable throughout the basin, we used
season- and station-specific linear regressions
to adjust continuous data to conform with
high-volume data. We defined seasons to
begin 1 January (winter), 1 April (spring), 1
July (summer), and 1 October (autumn).

Geographic differences were investigated
across six regions defined by continuous

PM0o monitoring stations (Figure 1). A
region consisted of all zip codes that had a
majority of their area closest to its station,
except that some western coastal zip codes,
which were separated from their closest sta-
tion (region 1) by mountains, were assigned
to region 2 to better represent their air quali-
ty. Admitted patients were assigned to
regions by their residence zip codes. We
excluded the 6.7% with zip codes missing or
outside the South Coast Air Basin from
regional analyses. We determined pollutant
gas concentrations and temperatures for each
region by averaging across all monitoring sta-
tions within it. Missing air monitoring data
(4.4% for PM1O, smaller percentages for other
variables) were replaced using analysis of vari-
ance with maximum likelihood estimation of
missing values. For PM10, data from all days
in the same season and all stations in the basin
were used in estimation; for other variables,
only stations in the same region were used.

Statistical analyses. We used BMDP
software (SPSS Inc., Chicago) and SAS soft-
ware (SAS Institute, Inc., Cary, NC) for
statistical analyses. Descriptive statistics and
correlation patterns were examined regionally
and seasonally for admission counts and
atmospheric variables. Further descriptive
analyses were performed to contrast weather
and pollution characteristics between days
with unusually high and unusually low
observed morbidity relative to predicted val-
ues accounting for cyclical and secular trends.
Predicted values were from regressions with
indicator variables for the day of the week

PM1, + gas + tsmperature monitor
M Temperature + gas monitor
* Gas monitor
A Weather Irain, barometric pressure) monitor

Figure 1. Air monitoring stations that contributed data to the analyses. Cities identified on the map have
the continuous PM10 monitors that represent the six separate air quality regions analyzed (see text).

and for weekday holidays, with longer term
variation modeled by fitting cubic splines to
successive 28-day intervals of data. We then
compared weather and pollution statistics
between days with high admissions (residual
> 85th percentile) and low admissions (resid-
ual < 15th percentile), as well as the immedi-
ately preceding days.

Time-series analytical approaches indud-
ed a) ordinary least squares (OLS) regression
with admission count and atmospheric data
filtered by the Shumway 19-day weighted
moving average procedure (13), with or with-
out an autoregressive component; b) regres-
sion of log-transformed daily admission
counts using polynomial distributed lag
models (14,15); and c) Poisson regression
with allowance for overdispersion and auto-
correlation, adapted from the analytical strat-
egy of the Partide Epidemiology Evaluation
Project (16) with modifications. In principle,
daily counts are Poisson distributed and
require approach c; however, given the gen-
erally large counts with filtering or smooth-
ing, distributions were reasonably near
normal so that other approaches were also
feasible (17). The different approaches yield-
ed similar conclusions when considering
cardiovascular diseases. Polynomial-distrib-
uted lag models showed the largest signifi-
cant effects consistently at lag 0, and effects
beyond lag 1 were nearly always nonsignifi-
cant. Therefore, we adopted Poisson regres-
sion as the primary analytical tool. Predictors
of daily admission counts included basis
variables of a cubic-spline smooth on time
(which accounted for secular trends and sea-
sonal variation); indicator variables for the
day of the week and for weekday holidays;
indicator variables for hot days (maximum
temperature > 85th percentile for entire
study period), cold days (minimum tempera-
ture < 15th percentile), and rain days (> 0.01
inches at the Los Angeles International
Airport); continuous atmospheric variables
(one or more pollutant concentrations,
barometric pressure, and mean temperature);
and an autoregressive term-the residual
admission count at lag 1, determined in a
preliminary regression including all other
predictors. Seasonal variation was more
complex for pulmonary diseases than for
others, probably because the timing and
intensity of winter infectious disease out-
breaks varied from year to year. Thus, cubic
splines were determined at 28-day intervals
when smoothing pulmonary disease counts,
and at 4-month intervals otherwise.

Results
Seasonal air quality and hospital admissions.
Table 1 presents seasonal pollution, weather,
and hospital admission statistics for the entire
basin for 1992-1995. Overall means ± SDs
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were 1.5 ± 0.8 ppm for CO, 3.4 ± 1.3 parts
per hundred million (pphm) for NO2, 45 ±
18 pg/m3 for PM1O, and 2.4 + 1.2 pphm for
03. We determined basinwide means from
the six regional values by weighting each
region according to its proportion of car-
diovascular plus pulmonary admissions (con-
sidered to reflect its proportion of the
population at risk). These levels reflect a
> 80% reduction of CO since the 1960s
(18), and more modest reductions in the
other pollutants. Year-round means and SDs
of daily admissions were 428 ± 76 for cardio-
vascular, 207 ± 54 for pulmonary, 74 ± 14
for cerebrovascular, and 244 ± 39 for abdom-
inal diseases. Seasonal means for abdominal
diseases (not tabulated) varied < 3%. All dis-
ease categories showed marked variation by
day of the week, consistent across seasons.
Relative to Monday admissions, Sunday
admissions averaged 64% for cardiovascular,
70% for pulmonary, 76% for cerebrovascu-
lar, and 67% for abdominal diseases.

Table 2 shows pairwise correlations of
basinwide average daily pollutant concentra-
tions, mean temperature, and barometric
pressure within each season. NO2 showed
high positive correlations (r . 0.8) with CO
in all seasons, and correlations nearly as high
with PM O.0 3 was positively correlated with
all three other pollutants only in the spring,
and most strongly with PM O0 03 showed a
weaker positive relationship to PM1O in the
summer and a negative relationship to CO
and NO2 in the winter. Higher mean tem-
peratures were associated with higher pollu-
tant levels in all seasons, with the exception
of CO in the autumn. Barometric pressure
showed varying relationships with pollutants.
Expressing the data as residuals from cubic-
spline smoothing brought about no marked
changes in these correlations, except that in
autumn the positive relationship between 03
and temperature became nonsignificant.
Regional measurements and basinwide aver-
ages correlated strongly for every pollutant in
every season (r > 0.7), except for PM1O in
the summer (r = 0.5-0.6 for some regions).
Different regions' measurements of a given
pollutant also correlated positively in all sea-
sons. Southern coastal region 4 and eastern
inland region 6 contrasted most sharply,
with r-values between 0.3 and 0.7. In light
of this generally similar behavior of air quali-
ty in different regions, time-series analyses
focused on the entire basin, and regional
comparisons were limited to regions 4 and 6.

Figure 2 shows average concentrations
by region and season for CO, PM1O, and
03. The mean and variance ofCO decreased
markedly in the spring and summer in all
regions. Autumn and winter CO were high-
est in the southern coastal region 4. PM10
was highest in the summer and autumn,

particularly in the eastern inland region 6, but
seasonal variation was less for PMIO than for
CO. 03 was highest in the spring and sum-
mer, particularly in inland regions 3 and 6.

Contrast of atmospheric conditions
between days with high and low admission
counts. Table 3 summarizes significant (p
< 0.05) differences in basinwide weather and
pollution statistics between days with unusu-
ally high and unusually low admission counts
(residuals from cubic-spline smoothing) in a
particular broad disease category. High-
admission days (and/or immediately preced-
ing days) tended to have relatively warm dry
weather. Primary pollution (CO and NO2)
was significantly elevated on winter, spring, or
autumn days with high cardiovascular admis-
sions; spring and summer days with high pul-
monary admissions; and spring and autumn
days with high cerebrovascular admissions.
Elevated PMIO tended to accompany elevated

Table 1. Aira and hospital admission statistics for
the entire South Coast Air Basin, by season.

Variable
(units) Season
CO Winter
(ppm) Spring

Summer
Autumn

NO2 Winter
(pphm) Spring

Summer
Autumn

PM10 Winter
(pg/mi3) Spring

Summer
Autumn

03 Winter
(pphm) Spring

Summer
Autumn

Temperature Winter
(mean, 'C) Spring

Summer
Autumn

Rain Winter
(% of days) Spring

Summer
Autumn

Cardiovascular Winter
adm/day Spring

Summer
Autumn

Pulmonary Winter
adm/day Spring

Summer
Autumn

Cerebrovascular Winter
adm/day Spring

Summer
Autumn

Mean ± SD
1.7± 0.8
1.0 ± 0.3
1.2 ± 0.4
2.1 ± 0.8
3.4 ± 1.3
2.8 ± 0.9
3.4 ± 1.0
4.1 ±1.4
37 ± 19
42 ± 12
49 ± 10
54 ± 22
1.4 ± 0.7
3.2 ± 1.0
3.3 ± 0.8
1.5 ± 0.9
14.8 ± 2.7
19.2 ± 3.0
23.9 ± 2.3
16.4 ± 3.7

28
4
1
10

450 ± 77
428 ± 76
406 ± 70
428 ± 76
241 ± 54
196 ± 34
172 ± 27
220 ± 63
77 14
74 14
72 14
75 14

Min
0.5
0.4
0.3
0.6
1.1
1.1
0.7
1.6
5
14
14
15
0.2
0.9
0.4
0.1
8.4
9.5
19.0
8.7

300
277
239
273
117
118
107
115
44
43
41
45

Max
5.3
2.2
2.7
4.3
9.1
6.1
6.7
8.4
115
83
78
132
4.4
7.0
6.3
4.7
23.2
29.2
31.2
26.7

607
586
559
610
574
329
256
595
126
116
114
117

Abbreviations: adm, admissions; max, maximum; min,
minimum; pphm, parts per hundred million.
"Pollutant concentrations are averaged across six
regions, each weighted according to its proportion of
cardiovascular plus pulmonary admissions.

primary pollutants on days with high cardio-
vascular or pulmonary admissions; PMIO also
was associated with high abdominal admis-
sions in the spring. 03 was increased (along
with the other pollutants) on days with high
pulmonary admissions in spring and sum-
mer, the seasons of the highest mean 03 con-
centrations (Table 1). By contrast, 03 was
decreased on days with high cardiovascular
admissions in the winter, when 03 was gen-
erally low and negatively correlated with the
other pollutants.

Table 4 shows mean weather and pollu-
tion conditions on days of high and low car-
diovascular admissions in the winter and
summer for the contrasting southern coastal
region 4 and eastern inland region 6. In the
summer, pollution (except for CO) and heat
were markedly greater in region 6, but there
were no clear pollution or temperature differ-
ences between high- and low-admission days
in either region. In the winter, CO was
markedly higher in region 4, and other
regional differences were modest. In region 4,
winter high-admission days had significantly
higher temperature, barometric pressure, CO,
NO2, and PM1O, and significantly lower
probabiliy of rain, than low-admission days.
In region 6, these tendencies were less obvious,
but CO and NO2 were significantly elevated
on the days preceding high-admission days. In
similar analyses of pulmonary diseases (not
tabulated), we found only a few significant
associations with high admissions: high
same-day PMIO in region 4 in the winter,

Table 2. Pairwise correlation coefficients (r) for
atmospheric factors expressed as basinwide 24-
hr averages,a by season.*

Factor Season
CO Winter

Spring
Summer
Autumn

NO2 Winter
Spring
Summer
Autumn

PM10 Winter
Spring
Summer
Autumn

03 Winter
Spring
Summer
Autumn

Tmean Winter
Spring
Summer
Autumn

NO2
0.89
0.92
0.94
0.84

PM10
0.78
0.54
0.72
0.58
0.88
0.67
0.80
0.80

03
-0.43
0.29
0.03
-0.36
-0.23
0.35
0.11
-0.00
-0.01
0.63
0.40
0.28

Tmean-
0.22
0.38
0.51
-0.08
0.38
0.53
0.51
0.28
0.37
0.64
0.44
0.40
0.33
0.57
0.18
0.62

Bpa

0.43
0.15
-0.17
0.38
0.38
0.03
-0.21
0.12
0.39
-0.18
-0.30
-0.03
-0.11
-0.23
-0.05
-0.42
0.13
-0.34
-0.20
-0.39

Abbreviations: BP, barometric pressure; T, temperature.
"BP measured only at the Los Angeles International
Airport; other variables averaged from measurements in
all six regions, weighted according to regions' propor-
tions of total cardiovascular plus pulmonary admissions.
*p< 0.05 for r> 0.10; p< 0.01 for r> 0.13.
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high previous-day CO and low previous-day
03 in region 6 in the winter, and high previ-
ous-day NO2 and 03 in region 6 in the
summer.

Analyses of admission counts in broad
disease categories. Table 5 presents the results
from single-pollutant autoregressive Poisson
models, induding all of the time and weather
predictors mentioned in "Methods," relating
daily average concentrations with same-day
hospital admission counts over the entire
basin for each broad disease category.
Admissions of patients under 30 years of age
are not included. To a good approximation,
the coefficients represent proportionate
increases in admission counts expected from
unit increases in pollutant concentrations.

Primary pollution, as represented by CO
and NO2, showed the most consistent associ-
ations with cardiovascular-disease admissions;
they were significantly related in year-round
analyses and in single-season analyses except
for the spring. PMIO showed a similar pattern
of relationships, but was nonsignificant in
the summer as well as the spring. The
cardiovascular disease/primary pollution rela-
tionship was not very sensitive to incusion or
exclusion of weather or other pollutant vari-
ables in the models. In the winter, the
interquartile range of CO concentrations
was 1.1 to 2.2 ppm, and the corresponding

51:1, ...
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Figure 2. Air quality in six regions (see Figure 1),
1992-1995. Bar = seasonal mean; flag = seasonal
SD.

predicted increase in cardiovascular admis-
sions was 4.2%, which represented approxi-
mately 20 extra admissions/day.

Pulmonary-disease admissions were
significantly related to NO2 or PMIO in
year-round and winter analyses, and also to
NO2 or CO in autumn. Cerebrovascular-
disease admissions were significantly related
only to CO or NO2 only in the spring.
Abdominal-disease admissions were signifi-
cantly related only to NO2, and only in the
year-round analysis.

03 showed either negative or nonsignifi-
cant positive relationships with cardiovascular,
pulmonary, cerebrovascular, and abdominal
disease admissions in year-round and single-
season analyses. The same was true in OLS
regressions of Shumway-filtered data (not

tabulated). Alternative analyses intended to
give additional weight to high-03 conditions,
by expressing exposure in terms of daily maxi-
ma or in exceedances of an assumed threshold,
or by restricting the analysis to the three high-
03 inland regions, still showed no significant
positive associations. In Poisson models
excluding mean temperature and barometric
pressure, daily mean 0 showed significant
positive associations wit1 pulmonary diseases
in the spring and year-round.

Table 6 illustrates the sensitivity of
results to the choice of regression procedure
and model for the cardiovascular disease/CO
relationship in the winter and the pulmonary
disease/03 relationship in the spring. Across
a broad range of models with and without
weather and other pollutants as predictors,

Table 3 Atmospheric variables showing significant (p < 0.05) differences between days with high and low
hospital admissions in the entire basin, by season."

Disease category Season CO NO2 PM10 03 Thigh T,w BP Rain

Cardiovascular Winter + + + - + +
Spring + + + b
Summer +
Autumn + + +

,,.!,8,:.-,;a..-..'t.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~b....

Cerebrovascular Winter b
Spring + + b +
Autumn b + +

.p.r............. ............ ;,. .............

Abbroviatons: BP, baromeric pressure; T, temperature.
'High- and low-admission days (> 85th and < 15th percentiles, respectively) are determined by residuals from regres-
sions accounting for temporal effects (see text). A significant increase in atmospheric variables on high-admission days
relative to low-admission days land/or the immediately preceding days) is indicated by +; a significant decrease by-.
the change in atmospheric measurement from the preceding day was significantly more positive on high- than low-
admission days, alfthough values measured on high and low days were not significantly different 'For pulmonary dis-
eases in winter, high-admission days' increases in NO2, PM,,, and high temperature approached significance (p < 0.10).
%or abdominal diseases in winter, high-admission days' increases in CO approached significance (p < 0.10).

Table 4. Atmospheric differences between days of high and low cardiovascular admissionsa in most con-
trasting regions/seasons.
Variable Admissions Region 4 (Long Beach) Region 6 (Riverside)
(units) (n) Winter Summer Winter Summer

CO (ppm) Low 2.1 1.0 1.1 1.1
High 2.9* 1.1 1.3** 1.2

NO2 (pphm) Low 3.4 2.8 2.5 3.8
High 4.4* 2.9 2.9** 4.0

PM10 (pg/m3) Low 27.6 38.0 39.1 84.6
High 42.8* 36.9 48.5 83.5

03 (pphm) Low 1.4 2.8 1.9 4.4
High 1.4 2.9 1.8 4.5

Thigh (0C) Low 17.9 25.6 19.2 33.7
High 20.1 * 25.6 19.6 33.9

T1ow(OC) Low 10.6 17.7 8.9 17.1
High 10.4 17.2 9.2 17.0

BPb (mbar) Low 1,016.2 1,012.9 1,017.3 1,012.5
High 1,01 8.5* 1,013.0 1,016.4 1,01 3.5*

Rainb(% of days) Low 38 0 26 0
High 12* 0 22 2

'See Table 3 for definition of high- and low-admission days. bMeasured at the Los Angeles International Airport, closer to
region 4 than region 6. Other measurements made within the indicated region. *Significant (p < 0.05) differences.
**Although this difference did not reach significance, the difference between days immediately preceding high- and
low-admission days was significant (p < 0.05).

VOLUME 108 NUMBER 5 May 2000 * Environmental Health Perspectives

B[,

430



Articles * Daily pollution and morbidity in Los Angeles

the estimated winter CO effect was always
significant and was reasonably consistent in
size. None of the other pollutants' effects was
significant when included in a model with
CO. The spring 0 effect on pulmonary
admissions was significant when 03 was the
only atmospheric factor in the model,
predicting a 1.5% increase in admissions for a
1-pphm increase in daily mean 03 concentra-
tion. However, the 03 effect was nonsignifi-
cant if the model included weather and/or
other pollutant variables. Interpretation of
these findings is complicated by collinearity
and by possibly different characteristics of
exposure measurement error for different pol-
lutants (19). Nevertheless, it seems dear that
in the winter, CO was the analyzed atmos-
pheric factor that was most closely linked
with excess cardiovascular morbidity. In the
spring, 03 was the pollutant most closely
associated with excess pulmonary morbidity;
however, morbidity was still more closely
associated with warm temperatures, and all
four pollutants tended to rise with tempera-
ture, making interpretation difficult.

Because diabetes mellitus is an important
risk factor for cardiovascular disease, we rean-
alyzed cardiovascular admissions separately
for diabetics (all of those with ICD code 250
entered among four additional diagnoses in
the record; approximately 20% of all
patients) and for others, using the autoregres-
sive Poisson model. In year-round analyses,
the slope ± SE was 0.039 ± 0.006 for diabet-
ics as compared to 0.031 ± 0.004 for others.
Year-round analyses of NO2 and PMIO
effects showed similar modest slope increases
for diabetics, as did single-season analyses.
None of the slope differences between dia-
betics and others was statistically significant.

Analyses ofcardiovascular disease admis-
sion counts by age, sex, and ethniity. Table
7 presents results from single-pollutant
autoregressive Poisson models applied to car-
diovascular admission counts in three age
strata (30-64, 65-74, and 2 75 years of age)
separately for men and women. Results for
03 (not tabulated) were never statistically sig-
nificant. CO effects were near-significant for
women 30-64 years of age and sig-nificant in
all other age-sex groups in year-round analy-
ses and in one or more seasonal analyses.
Effect sizes increased with age similarly in
both sexes, but age-related differences were
not significant. NO2 effects showed a similar
pattern of significance, but with less sugges-
tion of age dependence. PMIO effects were
also significant year-round and/or in one
season for all groups except men > 75 years
of age.

Table 8 presents the results from single-pol-
lutant autoregressive Poisson models applied to
cardiovascular admission counts for adults > 30
years of age in four ethnic categories-white

(non-Hispanic), black, Hispanic, and other.
The other category indudes people of Asian-
Pacific ancestry (the large majority), Native
Americans, and others not dassifiable in the
first three groups. 03 effects (not tabulated)
were never significant. Regression coefficients,
though not significantly different, suggested
meaningful ethnic differences in expo-
sure-response relationships. CO, NO2, and
PM0O effects were significant in whites in year-
round, winter, and autumn analyses. In
blacks, CO and NO2 effects were significant
year-round (also in the winter for CO) and
were similar to these effects in whites. CO and
NO2 effects in Hispanics were significant year-
round but were smaller than these effects in

whites and blacks. The remaining (other)
category, with a relatively small number of
admissions, showed consistently small and
nonsignificant regression slopes.

Analyses ofadumission counts for more
specifi diagnoses. Table 9 presents results in
adults > 30 years of age from single-
pollutant autoregressive Poisson models
relating basinwide daily average pollutant
concentrations with same-day admission
counts. Occlusive strokes showed the most
consistent positive relationships to pollution:
significant associations with 03 in the sum-
mer only; and with CO, NO2, and PMIO
year-round and in at least two single-season
analyses. Asthma, COPD, and CHF were

Table 5. Poisson regression coefficients (SEs): hospital admissions in broad disease categories in the
entire metropolitan area, versus same-day pollution levels.@

Pollutant,
units Season Cardiovascular Pulmonary Cerebrovascular Abdominal
CO All 0.032 (0.003)* 0.007(0.005) 0.009 (0.007) 0.003 (0.004)
(ppm) Winter 0.038 (0.006)* 0.016(0.009) -0.008 (0.014) 0.006 (0.008)

Spring 0.010 (0.015) 0.014 (0.024) 0.107 (0.033)* -0.007 (0.019)
Summer 0.035 (0.014)* 0.020 (0.021) 0.030 (0.033) 0.021 (0.018)
Autumn 0.027 (0.006)* 0.020 (0.008)* 0.008 (0.012) 0.006 (0.007)

NO2 All 0.014 (0.002)* 0.007 (0.003)* 0.004 (0.004) 0.004 (0.002)*
(pphm( Winter 0.016 (0.004)* 0.011 (0.005)* -0.013(0.007) 0.002(0.005)

Spring 0.001 (0.006) 0.007(0.010) 0.042 (0.012)* -0.004(0.007)
Summer 0.011 (0.005)* 0.004(0.008) 0.009(0.012) 0.008(0.006)
Autumn 0.014 (0.003)* 0.012 (0.004)* 0.007 (0.006) 0.007 (0.004)

PM10 All 0.00064 (0.00012)* 0.00057 (0.00018)* 0.00006 (0.00025) 0.00017 (0.00014)
(pg/m3) Winter 0.00095 (0.00024)* 0.00081 (0.00032)* -0.00021 (0.00052) 0.00013 (0.00030)

Spring -0.00031 (0.00037) 0.00010(0.00061) 0.00126(0.00083) 0.00039(0.00047)
Summer 0.00039(0.00041) 0.00061 (0.00061) 0.00127(0.00096) 0.00068(0.00052)
Autumn 0.00065 (0.00020)* 0.00078 (0.00029) -0.00004 (0.00039) 0.00008 (0.00022)

0 All -0.007 (0.003)** 0.008 (0.004) 0.003 (0.005) 0.003 (0.003)
(pphm) Winter -0.021 (0.008)** -0.006 (0.010) 0.028 (0.016) -0.012 (0.010)

Spring 0.003(0.005) 0.011 (0.008) 0.011 (0.011) 0.000(0.006)
Summer 0.001 (0.005) 0.006 (0.007) 0.007 (0.011) 0.011(0.006)
Autumn -0.003 (0.007) 0.009 (0.011) -0.003 (0.014) 0.000 (0.008)

'Regression analyses used 24-hr average measurements of pollutants and same-day admission counts for patients > 30
years of age throughout the South Coast Air Basin. Example interpretation: the coefficient 0.038 relating winter cardio-
vascular admissions to CO indicates that admissions increase by a factor of aem., i.e., by 3.9%, with a 1-ppm increase in
CO concentration, after allowing for the effects of time and weather on admission rates. *Significant in expected direc-
tion, p < 0.05. **Significant in the 'wrong' direction, p < 0.05.

Table 6. Sensitivity of key results to choice of regression procedure and model.

Procedure (additional predictors) Slope (SE) Relative risk8
Cardiovascular admissions versus CO, winter
Poisson autoregressive (time) 0.044 (0.005)* 1.050
Poisson autoregressive (time, weather) 0.038 (0.006)* 1.043
Poisson autoregressive (time, weather, 03) 0.036 (0.007)* 1.040
Poisson autoregressive (all above + PM10) 0.033 (0.011 )* 1.037
Poisson autoregressive (all above + NO2) 0.047 (0.013)* 1.053
PDLb (time, weather) 0.044 (0.008)* 1.050
OLS autoregressive (time, weather) 19.6 (3.1)* 1.048

Pulmonary admissions versus 03, spring
Poisson autoregressive (time) 0.012 (0.004)* 1.015
Poisson autoregressive (time, weather) 0.003 (0.005) 1.003
Poisson autoregressive (time, weather, CO) 0.002 (0.005) 1.002
Poisson autoregressive (all above + PM10) 0.008 (0.006) 1.009
Poisson autoregressive (all above + NO2) 0.008 (0.006) 1.009
PDLb (time, weather) 0.003 (0.011) 1.004
OLS autoregressive (time, weather) 1.58 (1.79) 1.010

'Predicted relative risk at the 75th percentile concentration of pollutant, versus the 25th percentile. hCubic polynomial
distributed lag model, lag 0 slope given, lags 1-3 slopes nonsignificant *Signficant in expected direction, p< 0.05.
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significantly associated with CO and NO2 admissions, CO, and PMIO in southern
year-round and in one or more single-season coastal region 4 and eastern inland region 6.
analyses. Myocardial infarction was associat- The two regions showed reasonably similar
ed with CO and NO2, and arrhythmias with daily admission counts and similar positive
CO, in year-round analyses only. correlations of daily CO and PMIO levels,

We also analyzed asthma admissions for but markedly different concentration ranges
patients 0-29 years of age. In year-round (Figure 2). By OLS regression allowing for
analyses, slopes ± SEs were 0.036 ± autocorrelation, a wintertime 1-ppm rise in
0.016/ppm CO, 0.024 ± 0.008/pphm NO2, CO predicted a 9-pg/m3 rise in PM10 in
and 0.0011 ± 0.0006/pg/i3 PM -all sig- region 4, but a 25 pg/m3 rise in region 6. In
nificant (p < 0.05) and appreciably larger single-pollutant autoregressive Poisson mod-
than the slopes in adults > 30 years of age. els, region 4 showed highly significant rela-
0 effects were nonsignificant. Most of the tionships between PMIO and admissions,
almitted patients in this youngest group year-round and in the winter, despite its low
were children: the mean age was 7. PM10. In region 6, despite its high PM1O,

Relationships of cardiovascular disease regression slopes were significantly lower
admissions to CO or PM10 in the two most than in region 4, and were not significantly
contrasting regions. Table 10 presents different from zero. Admissions showed a
comparative statistics for cardiovascular more plausible relationship with CO across

Table 7. Poisson regression coefficients (SEs): cardiovascular disease admissions in the entire metropoli-
tan area versus same-day pollution levels, by age and sex."

Sex, age in years Year-round Significant (p < 0.05) positive
[countib Pollutantc coefficient coefficients for separate seasons

Male 30-64 CO 0.014 (0.007)* Winter 0.040 (0.013), autumn 0.025 (0.013)
[99 ± 21] NO2 0.007 (0.004) Winter 0.017 (0.008), autumn 0.016 (0.007)

PM10 0.0003 (0.0003) Winter 0.0016 (0.0005)
Male 65-74 CO 0.037 (0.009)* Autumn 0.045 (0.016)
[61 ± 14] NO2 0.014 (0.005)* Autumn 0.024 (0.009)

PM10 0.0008 (0.0003)* Autumn 0.0013 (0.0006)
Male 75+ CO 0.040 (0.009)* Summer 0.068 (0.034), autumn 0.042 (0.015)
[59 ± 13] NO2 0.013 (0.005)* Autumn 0.020 (0.008)

PM10 0.0003 (0.0003) None
Female 30-64 CO 0.017 (0.009) None
[68 ± 15] NO2 0.015 (0.004)* Winter 0.018 (0.008)

PM10 0.0007 (0.0003)* None
Female 65-74 CO 0.033 (0.009)* Winter 0.043 (0.015)
[56 ± 12] NO2 0.014 (0.005)* Winter 0.017 (0.008)

PM10 0.0002 (0.0003) Winter 0.0012 (0.0006)
Female 75+ CO 0.040 (0.007)* Winter 0.047 (0.013), autumn 0.025 (0.01 1)
[88 ± 17] NO2 0.014 (0.004)* Winter 0.021 (0.008)

PM10 0.0005 (0.0003) Winter 0.0012 (0.0005)

"rhese results are for 1992-1994 only. See footnote to Table 5 for explanation of regression procedure and coefficients.
bAnnual mean daily admission count ± SD, for patients . 30 years of age. C03 results not tabulated; none was significantly
positive. *Year-round relationship significant, p < 0.05.

Table 8. Poisson regression coefficients (SEs): cardiovascular disease admissions in the entire metropoli-
tan area versus same-day pollution levels, by ethnic category.8

Category Year-round Significant (p < 0.05) positive
[countib Pollutantc coefficient coefficients for separate seasons

White CO 0.034 (0.005)* Winter 0.038 (0.008), autumn 0 .036 (0.008)
[290 ± 531 NO2 0.014 (0.003)* Winter 0.018 (0.005), autumn 0.017 (0.005)

PM10 0.0006 (0.0002)* Winter 0.0011 (0.0003), autumn 0.0007 (0.0003)
Black CO 0.031 (0.01 0)* Winter 0.042 (0.017)
[49 ±11] NO2 0.014 (0.006)* None

PM10 0.0003 (0.0004) None
Hispanic CO 0.019 (0.0091* None
[63 ± 131 NO2 0.010 (0.005)* None

PM10 0.0005 (0.0003) None
Other CO 0.001 (0.013) None
[29 ± 8] NO2 0.002 (0.007) None

PM10 -0.0004 (0.0005) None

the two regions, with highly significant posi-
tive slopes in region 4 and modestly lower
non-significant slopes in region 6, consistent
with its generally lower and less variable CO
concentrations.

Discussion
Limitations; recommendations for future
research. Problems with this and other
time-series studies indude exposure misdas-
sification, response misclassification, and
model misspecification. Exposure misclassifi-
cation occurs when the monitored environ-
mental factors are not the ones responsible
for health effects, when monitoring errors are

appreciable and differ by time and location,
when monitoring station data poorly repre-

sent background air near patients' homes,
when personal microenvironments differ
from background, or when exposures that
precipitate hospital admissions occur away

from home. Future expansion of the moni-
toring program, at least for particulate pollu-

tion, should provide better background con-

centration estimates, allowing more powerful
tests for regional differences in effects. New
personal monitoring studies, designed to elu-
cidate longitudinal relationships between
background and personal exposures, might
help to disentangle the effects of particulate
pollutants and covarying gases (e.g., CO and
NO2). Small panel studies have suggested
that personal particulate exposures track
background concentrations dosely in healthy
older adults and children in The Netherlands
(20,21), but not in older adults with COPD
in Los Angeles (22). To our knowledge, no

longitudinal studies of personal CO exposure

have been reported.
Response misclassification can result

from errors in diagnosis or in medical record
coding. Reviews suggest that 15-20% of
assigned ICD codes are inaccurate (23,24).
Inaccuracies should increase random errors

in specific disease counts and reduce the sta-

tistical significance of disease/pollution rela-
tionships, but should not introduce bias
unless coding inaccuracies covary with pollu-
tion. Misdiagnoses are hard to evaluate, but
are undoubtedly important, given the com-

plexities of disease processes and the fuzzy
boundaries between diagnoses. Wrong diag-
noses or codes would likely shift patients to

different specific disease counts within the
same broad category, and thus should have
relatively little effect on broad-category
analyses. In any event, we have had only lim-
ited success in finding specific pollutant-dis-
ease relationships with mechanistic or pub-
lic-health implications. Future studies focus-
ing on precise diagnoses and accounting for
other risk factors (e.g., additional diagnoses
and particular demographic characteristics)
might be more successful.
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,These results are for 1992-1994 only. See footnote to Table 5 for explanation of regression procedure and coefficients.
bAnnual mean daily admission count ± SD, for patients . 30 years of age. CO3 results not tabulated; none was significantly
positive. *Year-round relationship significant, p < 0.05.
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Limitations of our primary analytical to indusion or exclusion ofweather and other
model indude the use of only one pollutant pollutant variables. If pollutants not in the
at a time and possibly incomplete account- model affected admissions, the likely result
ing for weather and temporal influences. would be to overestimate effects of the mod-
Because estimated CO effects were similar in eled pollutant and underestimate total effects
various single- and multipollutant models of pollution (12). Thus, effects we associated
that accounted for seasonal and weekly with CO might be at least partly due to
cycles, more complete modeling of weather covarying gases (e.g., oxides of nitrogen) or to
or temporal effects should not change the particulate substances. Similarly, incomplete
conclusions concerning CO. By contrast, accounting for lagged effects would likely
estimates of 03 effects were highly sensitive result in overestimated effects of very recent

Table 9. Poisson regression coefficients (SEs): hospital admissions in more specific disease categories in
the entire metropolitan area, versus same-day pollution levels.a

Disease
[countib

Myocardial infarction
[47 ± 11]

Congestive heart failure
[49 ± 11]

Cardiac arrhythmia
[50 ± 10]

Occlusive stroke
[45 ± 101

Asthmac
[38 ± 91

COPD
[89 + 19]

Pollutant
CO
NO2
PM10
03

CO
NO2
PM10
03

CO
NO2
PM10
03

CO

NO2
PM10
03

CO
NO2
PM10
03

CO
NO2
PM10
03

Year-round
coefficient
0.040 (0.009)*
0.011 (0.005)*

0.0006 (0.0003)
-0.007 (0.007)
0.025 (0.009)*
0.010 (0.005)*

0.0004 (0.0003)
-0.001 (0.007)
0.023 (0.009)*
0.006 (0.005)

0.0002 (0.0003)
-0.001 (0.007)
0.044 (0.009)*

0.020 (0.005)*
0.0013 (0.0003)*
0.007 (0.007)
0.028 (0.01 0)*
0.014 (0.005)*

0.0003 (0.0004)
-0.001 (0.008)
0.019 (0.007)*
0.008 (0.004)*

0.0003 (0.0002)
-0.007 (0.005)

Significant (p < 0.05) positive
coefficients for separate seasons

None
None
None
None
Summer 0.074 (0.038)
Winter 0.019 (0.009)
None
None
None
None
None
None
Winter 0.036 (0.017), summer 0.091 (0.039),
autumn 0.032 (0.015)

Winter 0.027 (0.010), autumn 0.021 (.008)
Winter 0.0024 (0.0006), autumn 0.0012 (0.0005)
Summer 0.025 (0.012)
Winter 0.045 (0.017), autumn 0.039 (0.016)
Winter 0.028 (0.010), autumn 0.019 (0.008)
None
None
Winter 0.035 (0.012), autumn 0.029 (0.011)
Autumn 0.016 (0.006)
None
None

j

'See footnote to Table 5 for explanation of regression procedure and coefficients. bAnnual mean daily admission count ±
SD for patients 2 30 years of age. 0See text concerning asthma in patients < 30 years of age. *Year-round relationship
significant, p < 0.05.

Table 10. Daily cardiovascular (CV) admissions, CO, and PM10: statistics for the two most contrasting
regions.

Statistic
CV admission count interquartile range

CO interquartile range (ppm)

PM10 interquartile range (pg/m3)

Correlation, CO vs. PM10

Correlation, CO vs. PM10 residualsa

Regression slope, CV vs. Cob

Regression slope, CV vs. pM1b

Season
All
Winter
All
Winter
All
Winter
All
Winter
All
Winter
All
Winter
All
Winter

Region 4
(Long Beach)

48-67
52-71

0.93-2.40
1.33-3.17
28-45
20-43
0.56*
0.70*
0.63*
0.72*

0.022 (0.005)*
0.027 (0.008)*

0.0012 (0.0003)*
0.0018 (0.0006)*

Region 6
(Riverside)

43-57
44-59

0.81-1.58
0.74-1.70
44-86
24-61
0.55*
0.75*
0.69*
0.76*

0.012 (0.008)
0.017 (0.015)

0.0001 (0.0002)
0.0003 (0.0004)

exposure, but underestimated cumulative
effects of recent and earlier exposures (14).

Conclusion
In general, our results from metropolitan
Los Angeles appear consistent with reports
from elsewhere (7-12) that day-to-day
increases in urban CO and/or PMIO and/or
NO2 are associated with meaningful increas-
es in cardiovascular illnesses. We found only
a few equivocally positive relationships
between cardiopulmonary morbidity and
03, in situations when other pollutants and
heat stress increased along with 0 This is
surprising, in light of severe 03 potlution in
Los Angeles, obvious acute respiratory effects
of 03 in animal and human exposure studies
(2), and recent observations of 03-related
hospital admissions in Toronto, Canada,
where 03 levels are lower than in Los
Angeles (12). 03 has been linked to mortali-
ty in Los Angeles (13), although PMIO
might explain that association (25). On the
other hand, a recent time-series study of
asthma admissions in central and western
Los Angeles (26) generally supports our

findings, showing associations with PMIO
but not with 03. The tendency of 03 con-

centrations to decrease indoors, where most
people spend most of their time (27), might
attenuate morbidity/03 relationships, but
would not likely do so in Los Angeles more

than in Toronto. In any event, our results
suggest that the excess risk ofhospitalization in
Los Angeles is greater on high-primary-pollu-
tion days than on high-0 days. The greatest
risk of pollution-related hospital admissions
apparently occurs on autumn/winter days with
weak Santa Ana weather conditions, when air
incursion from the desert approximately coun-

terbalances that from the ocean, resulting in
maximal atmospheric stagnation.

We could not distinguish clearly among
CO-, NO2- and particle-associated effects.
CO showed the strongest statistical relation-
ships with most indices of morbidity even in
the regions and seasons with the highest and
widest ranging PM1O. NO2 tracked CO dose-
ly enough that CO-associated effects might
reasonably be attributed to NO2 and/or
another oxide of nitrogen. Weaker statistical
relationships of illness to PM10 might have
resulted from less accurate exposure assess-

ment even if PMIO were inherently more

toxic (19). Too lirtle is known about the rela-
tionships between the ambient background
and personal exposures to judge which pollu-
tants are most subject to exposure misdassifi-
cation. Even if PM10/morbidity associations
were entirely explainable by CO/morbidity
associations, some particulate species closely
associated with CO might be the active
agent(s). Alternatively, our findings might
reflect separate effects of CO and some
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'Observed values minus values predicted by day of the week and cubic-spline smooth of longer term trends. 1From sin-
gle-pollutant autoregressive Poisson models including temporal and weather effects. *Significant, p < 0.05.
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component of PM1O, as suggested by the
Schwartz (9) Tucson, Arizona, study. One
argument against CO effects per se is that
typical ambient background CO concentra-
tions are below normal bloodstream concen-
trations of metabolically produced CO (3).
Even on most high-CO days in Los Angeles,
inhaling the background concentration
should reduce the blood's oxygen-carrying
capacity by < 1%. However, CO concentra-
tions near sources (e.g., heavy traffic) exceed
background levels and may cause appreciable
cardiovascular stress (9,10). If both are driven
by atmospheric stagnation, these higher
microenvironmental concentrations should
track background levels. Thus, a low range of
monitored background CO does not neces-
sarily rule out an effect ofCO on cardiovascu-
lar morbidity.

The observed association of all pul-
monary diseases with PMIO or NO2 more
than CO, and of all cardiovascular diseases
with CO more than PM1O (Table 5), appears
consistent with the well-known properties of
CO as a circulatory toxicant without direct
effects on the lungs, and of some particulate
species as respiratory irritants. The associa-
tion of occlusive strokes with all four tested
pollutants appears consistent with the
hypothesis of Seaton et al. (28) that urban
pollution provokes alveolar inflammation,
releasing mediators which increase blood
coagulability. A previous finding of increased
plasma viscosity during a primary pollution
episode in Germany (2,9 also supports that
hypothesis. By our data, we cannot test
Seaton et al.'s (28) attribution of the inflam-
matory effect to ultrafine particles.

We found possibly meaningful demo-
graphic differences in morbidity/pollution
relationships, although none of them attained
statistical significance. Persons . 65 years of
age and diabetics showed somewhat increased
cardiovascular disease effects as compared to
others without those risk factors, but men did
not appear to be more at risk than women of
similar age. Persons younger than 30 years of
age showed the largest pollution-related
effects on asthma. Although air pollution
health risks are believed to fall disproportion-
ately on ethnic minorities (30), whites usually
showed the largest pollution-related effects on
cardiovascular disease. Effect sizes in blacks,
the minority group generally at greatest risk
for cardiovascular disease, were similar to
those in whites, whereas effect sizes were
generally smaller in Hispanics and unde-
tectable in the other (predominantly Asian)
ethnic category. Definitive interpretation
would require evaluation of ethnic differ-
ences in exposure, susceptibility, and access
to hospitals. On average, 03 exposures in the
basin appear higher for whites than for blacks

or Asian/Pacific Islanders (31). Differences in
other exposures apparently have not been
studied formally, but the high-primary-pollu-
tion regions 2 and 4 have high proportions of
minority residents. Thus, smaller effects in
some minorities (if real) probably are not
explained by less exposure.

The relatively nonspecific pattern of
diagnoses suggests that excess patients
admitted to hospitals on high-pollution
days in metropolitan Los Angeles are indi-
viduals with preexisting problems which
make them highly vulnerable to any extra
stresses on their oxygen delivery systems,
including unfavorable changes in the air
environment. If so, generalized efforts to
preserve cardiopulmonary health should
help to prevent (or at least to postpone) pol-
lution-associated illnesses. Our findings sug-
gest that control of primary pollutants is
more important to public health than con-
trol of 0, which in any case depends on
control ofprimary pollutants.
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